Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631706

RESUMO

BACKGROUND: Tumor-targeted therapy causes impressive tumor regression, but the emergence of resistance limits long-term survival benefits in patients. Little information is available on the role of the myeloid cell network, especially dendritic cells (DC) during tumor-targeted therapy. METHODS: Here, we investigated therapy-mediated immunological alterations in the tumor microenvironment (TME) and tumor-draining lymph nodes (LN) in the D4M.3A preclinical melanoma mouse model (harboring the V-Raf murine sarcoma viral oncogene homolog B (BRAF)V600E mutation) by using high-dimensional multicolor flow cytometry in combination with multiplex immunohistochemistry. This was complemented with RNA sequencing and cytokine quantification to characterize the immune status of the tumors. The importance of T cells during tumor-targeted therapy was investigated by depleting CD4+ or CD8+ T cells in tumor-bearing mice. Tumor antigen-specific T-cell responses were characterized by performing in vivo T-cell proliferation assays and the contribution of conventional type 1 DC (cDC1) to T-cell immunity during tumor-targeted therapy was assessed using Batf3-/- mice lacking cDC1. RESULTS: Our findings reveal that BRAF-inhibitor therapy increased tumor immunogenicity, reflected by an upregulation of genes associated with immune activation. The T cell-inflamed TME contained higher numbers of activated cDC1 and cDC2 but also inflammatory CCR2-expressing monocytes. At the same time, tumor-targeted therapy enhanced the frequency of migratory, activated DC subsets in tumor-draining LN. Even more, we identified a cDC2 population expressing the Fc gamma receptor I (FcγRI)/CD64 in tumors and LN that displayed high levels of CD40 and CCR7 indicating involvement in T cell-mediated tumor immunity. The importance of cDC2 is underlined by just a partial loss of therapy response in a cDC1-deficient mouse model. Both CD4+ and CD8+ T cells were essential for therapy response as their respective depletion impaired therapy success. On resistance development, the tumors reverted to an immunologically inert state with a loss of DC and inflammatory monocytes together with the accumulation of regulatory T cells. Moreover, tumor antigen-specific CD8+ T cells were compromised in proliferation and interferon-γ-production. CONCLUSION: Our results give novel insights into the remodeling of the myeloid landscape by tumor-targeted therapy. We demonstrate that the transient immunogenic tumor milieu contains more activated DC. This knowledge has important implications for the development of future combinatorial therapies.


Assuntos
Melanoma , Humanos , Animais , Camundongos , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Proteínas Proto-Oncogênicas B-raf/genética , Células Dendríticas , Antígenos de Neoplasias , Microambiente Tumoral
2.
Crit Rev Oncog ; 29(1): 31-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421712

RESUMO

The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.


Assuntos
Células T Matadoras Naturais , Vacinas , Humanos , Vacinação , Diferenciação Celular
3.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474653

RESUMO

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-Positivos
4.
Bioconjug Chem ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022946

RESUMO

Synthetic vaccines that induce T cell responses to peptide epitopes are a promising immunotherapy for both communicable and noncommunicable diseases. Stimulating strong and sustained T cell responses requires antigen delivery to appropriately activated antigen presenting cells (APCs). One way this can be accomplished is by chemically conjugating immunogenic peptide epitopes with α-galactosylceramide (α-GalCer), a glycolipid that acts as an immune adjuvant by inducing stimulatory interactions between APCs and type I natural killer T (NKT) cells. Here we investigate whether increasing the ratio of antigen:adjuvant improves antigen-specific T cell responses. A series of conjugate vaccines was prepared in which one, two, four, or eight copies of an immunogenic peptide were covalently attached to a modified form of α-GalCer via the poly(ethoxyethylglycinamide) dendron scaffold. Initial attempts to synthesize these multivalent conjugate vaccines involved attaching the bicyclo[6.1.0]non-4-yne (BCN) group to the adjuvant-dendron structure followed by strain-promoted azide-alkyne cycloaddition of the peptide. Although this approach was successful for preparing vaccines with either one or two peptide copies, the synthesis of vaccines requiring attachment of four or eight BCN groups suffered from low yields due to cyclooctyne degradation. Instead, conjugate vaccines containing up to eight peptide copies were readily achieved through oxime ligation with adjuvant-dendron constructs decorated with the 8-oxo-nonanoyl group. When evaluating T cell responses to vaccination in mice, we confirmed a significant advantage to conjugation over admixes of peptide and α-GalCer, regardless of the peptide to adjuvant ratio, but there was no advantage to increasing the number of peptides attached. However, it was notable that the higher ratio conjugate vaccines required lower levels of NKT cell activation to be effective, which could be a safety advantage for future vaccine candidates.

5.
Cell Rep ; 42(4): 112310, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36989114

RESUMO

Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Imunidade Humoral , Anticorpos Antivirais , SARS-CoV-2 , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Diferenciação Celular , Células Dendríticas
6.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36881133

RESUMO

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Assuntos
Melanoma , Neoplasias Cutâneas , Masculino , Humanos , Adolescente , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Peptídeos/metabolismo , Anticorpos/metabolismo , Citocinas/metabolismo , Células Dendríticas , Antígenos de Neoplasias
7.
iScience ; 26(4): 106256, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845030

RESUMO

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

8.
Clin Transl Immunology ; 11(7): e1401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795321

RESUMO

Objectives: Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods: We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results: Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion: Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.

9.
Curr Protoc ; 2(7): e482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819836

RESUMO

Full-spectrum flow cytometry is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With capacity to use larger and more complex staining panels, standardized protocols are required for optimal panel design and analysis. Importantly, for ex vivo analysis, tissue preparation methods also need to be optimized to ensure samples are truly representative of tissues in situ. This is particularly relevant given the recent interest in adaptive immune cells that form residency in specific organs. Here we provide optimized protocols for tissue processing and phenotyping of memory T cells and natural killer T (NKT) cell subsets from liver, lung, spleen, and lymph node using full-spectrum flow cytometry. We provide a 21-color antibody panel for identification of different memory subsets, including tissue-resident memory T (TRM ) cells, which are increasingly regarded as important effectors in adaptive immunity. We show that processing procedures can affect outcomes, with liver TRM cells particularly sensitive to heat, such that accurate evaluation requires fast processing at defined temperatures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Processing mouse liver for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 2: Processing mouse spleen for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 3: Processing mouse lungs for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 4: Processing mouse lymph nodes for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 5: Staining and flow cytometric analysis of samples for memory T and NKT cell subsets Support Protocol: Obtaining cell counts from flow cytometry data.


Assuntos
Células T Matadoras Naturais , Animais , Citometria de Fluxo/métodos , Camundongos , Fenótipo , Baço , Coloração e Rotulagem
10.
RSC Chem Biol ; 3(5): 551-560, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35656478

RESUMO

Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria.

11.
Oncoimmunology ; 11(1): 2081009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712122

RESUMO

Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.


Assuntos
Células T Matadoras Naturais , Neoplasias , Animais , Linfócitos T CD8-Positivos , Citosina/metabolismo , Citosina/farmacologia , Guanina/metabolismo , Guanina/farmacologia , Interferon gama , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Camundongos , Células T Matadoras Naturais/metabolismo , Neoplasias/tratamento farmacológico , Fosfatos/metabolismo , Fosfatos/farmacologia
12.
Pathology ; 54(4): 417-424, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35082053

RESUMO

Tumour infiltrating lymphocyte (TIL) density is prognostically significant in various tumours, but few studies have investigated its significance in meningioma. This study aimed to investigate how TIL density differs by meningioma histology and whether it is a predictor of meningioma recurrence. We studied CD3, CD8, CD4, FOXP3 and PD-1 positive (+) TIL density in a continuous cohort of 476 meningiomas resected at Auckland Hospital between 2002 and 2011 using tissue microarrays and computer assisted image analysis. TILs were identified in all meningiomas except one (median CD3+ TIL density across entire cohort 53.0 cells/mm2). Most TILs were CD8+ (median 33.6 cells/mm2) with smaller numbers of CD4+ TILs (median 2.9 cells/mm2). PD-1+ (median 0.32 cells/mm2) and FOXP3+ (median 0.0 cells/mm2) TILs were scarce. Reduced CD3+ (p=0.0066), CD8+ (p=0.0029) and PD-1+ (p=0.0375) TIL density was seen in WHO grade II/III meningioma compared with WHO grade I. Pairwise comparison confirmed statistically significant differences in TIL density existed between meningioma types (CD3, CD8, CD4, p<0.0001; FOXP3, p=0.0096; PD-1, p=0.0090) with chordoid meningioma having the lowest overall CD3+ TIL density (median 12.5 cells/mm2). Despite its low TIL density, chordoid meningioma had a higher FOXP3:CD8 ratio than several meningioma types. Atypical meningioma had a higher FOXP3:CD8 ratio than transitional meningioma (p=0.0045). No association between TIL density and recurrence was seen across the entire cohort or by WHO grade. However, CD3+ and CD8+ TIL density was associated with recurrence in atypical meningioma on multivariable analysis (CD3, p=0.0012; CD8, p=0.0071). A higher CD3+ and CD8+ TIL density was associated with improved recurrence free survival. Our findings suggest CD3+ and CD8+ TIL density is prognostically significant in atypical meningioma. Further investigation of this observation and its biological basis is warranted. The differences in TIL density by meningioma histology may be of relevance in studies of therapeutic immune checkpoint inhibition.


Assuntos
Neoplasias Meníngeas , Meningioma , Fatores de Transcrição Forkhead , Humanos , Linfócitos do Interstício Tumoral , Neoplasias Meníngeas/patologia , Meningioma/patologia , Prognóstico , Receptor de Morte Celular Programada 1
13.
Front Immunol ; 12: 748741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737749

RESUMO

Prostate cancer is the second most common cancer in men worldwide. Despite an abundance of prostate-specific antigens, immunotherapies have yet to become a standard of care, potentially limited by T-cell dysfunction. Up to 10% of human circulating T-cells, and a significant fraction in the urogenital tract, are mucosal-associated invariant T (MAIT) cells. MAIT cells express stereotyped T-cell receptors that recognize riboflavin metabolites derived from microbes presented by MR-1. We evaluated the number, phenotype and function of circulating MAIT cells, alongside two other innate-like T (ILT) -cell subsets, in men with prostate cancer and age- and sex-matched controls. MAIT cells in men with prostate cancer circulated at similar frequencies to controls, but their cytokine production and proliferation was impaired. In contrast, the function of two other ILT-cell populations (natural killer T-cells and Vγ9Vδ2 T-cells) was not impaired. In both patients and controls, MAIT cells expressed high levels of the immune checkpoint molecule PD-1 at rest, while upregulation of PD-1 in response to the MR-1 ligand 5-amino-6D-ribitylaminouracil (5-A-RU) was greater in patients. 5-A-RU also induced upregulation of PD-L1 and -L2 RNA in primary mononuclear cells. We confirmed that circulating MAIT cell number and function were preserved before and during anti-PD1 therapy with pembrolizumab in a cohort of patients with melanoma. In vitro, 5-A-RU enhanced mononuclear cell cytotoxicity against the PD-L1 positive prostate cancer cell line PC3 in an MR-1-dependent manner. Addition of pembrolizumab enhanced this cytotoxicity, and was associated with increased MAIT cell expression of CD107a and IFN-γ. We conclude that prostate cancer is associated with MAIT-cell dysfunction, and that this might be overcome through the application of potent MR-1 ligands with PD-1 blockade. These findings may have implications for the development of cancer immunotherapies that exploit MAIT cells.


Assuntos
Células T Invariantes Associadas à Mucosa/imunologia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias da Próstata/imunologia , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/imunologia , Humanos , Imunoterapia , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Células PC-3 , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias da Próstata/terapia
14.
Allergy ; 76(10): 3155-3170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34185885

RESUMO

BACKGROUND: Mucosal-associated invariant T (MAIT) cells are unconventional T cells which recognize microbial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although MAIT cells have been shown to reside in human and murine skin, their contribution to atopic dermatitis (AD), an inflammatory skin disease associated with barrier dysfunction and microbial translocation, has not yet been determined. METHODS: Genetic deletion of MR1 and topical treatment with inhibitory MR1 ligands, which result in the absence and functional inhibition of MAIT cells, respectively, were used to investigate the role of MR1-dependent immune surveillance in a MC903-driven murine model of AD. RESULTS: The absence or inhibition of MR1 arrested AD disease progression through the blockade of both eosinophil activation and recruitment of IL-4- and IL-13-producing cells. In addition, the therapeutic efficacy of phototherapy against MC903-driven AD could be increased with prior application of folate, which photodegrades into the inhibitory MR1 ligand 6-formylpterin. CONCLUSION: We identified MAIT cells as sentinels and mediators of cutaneous type 2 immunity. Their pathogenic activity can be inhibited by topical application or endogenous generation, via phototherapy, of inhibitory MR1 ligands.


Assuntos
Dermatite Atópica , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Terapia Ultravioleta , Animais , Dermatite Atópica/terapia , Modelos Animais de Doenças , Camundongos
15.
Front Pharmacol ; 12: 701456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163368

RESUMO

Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.

16.
Cells ; 10(5)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923305

RESUMO

The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable responses are limited to a minority of patients and malignancies, indicating the presence of underlying resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach to improve immunotherapy responsiveness.


Assuntos
Imunidade/imunologia , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Microambiente Tumoral , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia
17.
Oxf Open Immunol ; 2(1): iqab013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36845569

RESUMO

Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.

18.
Mol Immunol ; 130: 1-6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340930

RESUMO

The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.


Assuntos
Galactosilceramidas/uso terapêutico , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Neoplasias/terapia , Adjuvantes Imunológicos/uso terapêutico , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Galactosilceramidas/farmacologia , Humanos , Ativação Linfocitária/fisiologia , Células T Matadoras Naturais/fisiologia , Células T Matadoras Naturais/transplante , Neoplasias/imunologia
19.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352882

RESUMO

Signalling through pattern recognition receptors (PRRs) leads to strong proinflammatory responses, enhancing the activity of antigen presenting cells and shaping adaptive immune responses against tumour associated antigens. Unfortunately, toxicities associated with systemic administration of these agonists have limited their clinical use to date. Direct injection of PRR agonists into the tumour can enhance immune responses by directly modulating the cells present in the tumour microenvironment. This can improve local antitumour activity, but importantly, also facilitates systemic responses that limit tumour growth at distant sites. As such, this form of therapy could be used clinically where metastatic tumour lesions are accessible, or as neoadjuvant therapy. In this review, we summarise current preclinical data on intratumoural administration of PRR agonists, including new strategies to optimise delivery and impact, and combination studies with current and promising new cancer therapies.

20.
Food Funct ; 11(7): 5782-5787, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618294

RESUMO

Methylglyoxal (MGO) is the main antimicrobial determinant associated with using Manuka Honey as a topical dressing. While direct mechanisms of Manuka honey MGO's antimicrobial activity have been demonstrated, such as disruption of bacterial fimbria and flagella, no interaction of Manuka honey-derived MGO with antimicrobial effector cells of the immune system, such as mucosal-associated invariant T cells (MAIT cells), has yet been reported. MAIT cells are an abundant subset of human T cells, critical for regulating a diverse range of immune functions, including antimicrobial defense mechanisms but also mucosal barrier integrity. MAIT cells become activated by recognition of an important microbial metabolite, 5-amino-6-d-ribitylaminouracil (5-A-RU), which is produced by a wide range of microbial pathogens and commensals. Recognition is afforded when 5-A-RU condenses with mammalian-cell derived MGO to form the potent MAIT cell activator, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU). Formation of 5-OP-RU and its subsequent presentation to MAIT cells by major histocompatibility (MHC)-related molecule 1 (MR1) facilitates host-pathogen and host-commensal interactions. While MGO is a metabolite naturally present in mammalian cells, it is unclear whether exogenous dietary MGO sources, such as those obtained from Manuka honey intake, can contribute to 5-OP-RU formation and enhance MAIT cell activation. In this work, we report that endogenous MGO is the rate-limiting substrate for converting microbial 5-A-RU to 5-OP-RU and that Manuka honey-derived MGO significantly enhances MAIT cell activation in vitro. Our findings posit a novel mechanism by which intake of a food item, such as Manuka honey, can potentially support immune homeostasis by enhancing MAIT cell-specific microbial sensing.


Assuntos
Mel , Fatores Imunológicos/farmacologia , Leptospermum , Ativação Linfocitária/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/metabolismo , Aldeído Pirúvico/farmacologia , Antibacterianos/farmacologia , Apiterapia , Humanos , Aldeído Pirúvico/metabolismo , Ribitol/análogos & derivados , Ribitol/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...